(C) Copyright Sunday, May Tenth, Two Thousand and Nine Common Era By Justin M Coslor ALL RIGHTS RESERVED NUMBER AND MATH SYMBOL OPERATORS IN GODEL NUMBERING FOR PICFORM PICVIS The prime number base is the "X" axis, and the exponent is the "Y" axis, and the X axis is perpendicular to the Y axis. *Note: There might be a way to use fractional exponents for more pixels using less computation. 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 2^5 2^7 | | | | | 3^1 | 3^2 3^3 3^5 3^7 | | | | | 5^1 | 5^2 5^3 5^5 5^7 | | | | | 7^1 | 7^2 7^3 7^5 7^7 | ----------------------------------------| This is the basic four pixel by four pixel (16 pixel) display for creating new symbols in PICVis for the PICForm language using Godel Numbering. Here is an example: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 [2^7] | | | | | 3^1 | [3^2] [3^3] 3^5 [3^7] | | | | | 5^1 | 5^2 [5^3] 5^5 [5^7] | | | | | 7^1 | 7^2 [7^3] 7^5 [7^7] | ----------------------------------------| [2^2]*[2^3]*[2^7]*[3^2]*[3^3]*[3^7]*[5^3]*[5^7]*[7^3]*[7^7] = "Selah" "Selah" = [2^42]*[3^42]*[5^21]*[7^21] So therefore "Selah" = [1.28168543 * 10^65] by old inaccurate Real Number math, yet in Geometry "Selah" = 2 pulses repeated 42 times, followed by 3 pulses repeated 42 times, followed by 5 pulses repeated 21 times, followed by 7 pulses repeated 21 times, followed by a spike or a pause. The pulse sequences would happen very fast so that information could be transcribed accurately and quickly even in alien computational systems. An entire alphabet and number system and higher math and language and diagrams (diagrams from stitching together a quilt of these 16 pixel database grids) could easily be represented in this manner (Such as PICForm, the language I rough drafted (invented) over about a five year period, which is Patterns in Contexts Formalized Epistemological Programming Language. . .PICVis (Patterns In Contexts Visualization System) is to be the visual counterpart of PICForm). The symbol "Selah" means "the here and now" and it also means "pay close attention to the present moment". Notice the braces "[ ]". These mean that that position in the database grid is a pixel that is part of a pictogram. ----------------------------------------------------------------------- This is an example of the number zero: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] 3^3 [3^5] 3^7 | | | | | 5^1 | [5^2] 5^3 [5^5] 5^7 | | | | | 7^1 | 7^2 [7^3] 7^5 7^7 | ----------------------------------------| This is an example of the number 1: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] [3^3] 3^5 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] [7^3] [7^5] 7^7 | ----------------------------------------| This is an example of the number 2: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 2^7 | | | | | 3^1 | 3^2 3^3 [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] [7^3] [7^5] [7^7] | ----------------------------------------| This is an example of the number 3: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 2^7 | | | | | 3^1 | 3^2 3^3 [3^5] 3^7 | | | | | 5^1 | [5^2] [5^3] [5^5] 5^7 | | | | | 7^1 | [7^2] [7^3] 7^5 7^7 | ----------------------------------------| This is an example of the number 4: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] 2^3 [2^5] 2^7 | | | | | 3^1 | [3^2] [3^3] [3^5] [3^7] | | | | | 5^1 | 5^2 5^3 [5^5] 5^7 | | | | | 7^1 | 7^2 7^3 [7^5] 7^7 | ----------------------------------------| This is an example of the number 5: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] 3^3 3^5 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] [7^3] 7^5 7^7 | ----------------------------------------| Here is an example of the number 6: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 [2^5] 2^7 | | | | | 3^1 | 3^2 [3^3] 3^5 3^7 | | | | | 5^1 | [5^2] 5^3 [5^5] 5^7 | | | | | 7^1 | [7^2] [7^3] [7^5] 7^7 | ----------------------------------------| Here is an example of the number 7: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] [2^5] 2^7 | | | | | 3^1 | 3^2 3^3 [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the number 8: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 [2^3] [2^5] 2^7 | | | | | 3^1 | 3^2 [3^3] [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] [5^5] 5^7 | | | | | 7^1 | 7^2 [7^3] [7^5] 7^7 | ----------------------------------------| Here is an example of the number 9: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] 3^3 [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the + operator for addition: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 2^5 2^7 | | | | | 3^1 | 3^2 [3^3] 3^5 3^7 | | | | | 5^1 | [5^2] [5^3] [5^5] 5^7 | | | | | 7^1 | 7^2 [7^3] 7^5 7^7 | ----------------------------------------| Here is an example of the - operator for subtraction: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 2^5 2^7 | | | | | 3^1 | 3^2 3^3 3^5 3^7 | | | | | 5^1 | [5^2] [5^3] [5^5] 5^7 | | | | | 7^1 | 7^2 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the * operator for multiplication: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 2^5 2^7 | | | | | 3^1 | 3^2 [3^3] [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] [5^5] 5^7 | | | | | 7^1 | 7^2 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the / operator for division: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 2^3 2^5 [2^7] | | | | | 3^1 | 3^2 3^3 [3^5] 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the ^ operator for exponentiation: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | 2^2 [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] 3^3 [3^5] 3^7 | | | | | 5^1 | 5^2 5^3 5^5 5^7 | | | | | 7^1 | 7^2 7^3 7^5 7^7 | ----------------------------------------| Here is an example of the [ operator for encapsulation: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 2^7 | | | | | 3^1 | [3^2] 3^3 3^5 3^7 | | | | | 5^1 | [5^2] 5^3 5^5 5^7 | | | | | 7^1 | [7^2] [7^3] 7^5 7^7 | ----------------------------------------| Here is an example of the ] operator for encapsulation: 1^1 | 2^1 3^1 5^1 7^1 | ----|-----------------------------------| | | 2^1 | [2^2] [2^3] 2^5 2^7 | | | | | 3^1 | 3^2 [3^3] 3^5 3^7 | | | | | 5^1 | 5^2 [5^3] 5^5 5^7 | | | | | 7^1 | [7^2] [7^3] 7^5 7^7 | ----------------------------------------|